
8.3 Hydrogenic Atoms 

Let us consider a one-electron atom having atomic number 𝑍. We know that 𝑍 =

 1 for the hydrogen atom (𝐻). The charge on the nucleus is 𝑍𝑒 and that on the 

electron is – 𝑒.  

The potential energy due to the attractive Coulomb interaction between them is 

 

which depends only on the distance 𝑟 between the nucleus and the electron and 

hence is spherically symmetric. 

If 𝑚 is the mass of the electron and 𝑀 is the mass of the nucleus, then the reduced 

mass of the system is 

𝜇 =
𝑚𝑀

𝑚 + 𝑀
 

Since the nuclear mass 𝑀 is much larger than the electron mass m, the reduced 

mass 𝜇 is very close to m. That is, we shall consider the nucleus to be stationary. 

The radial Equation (8.12) becomes 

 

Since we are interested only in the energies associated with the relative motion, we 

may assume that we are working in the center-of-mass system, so that 𝐸𝑹 = 0 and 

the total energy 𝐸 is equal to the energy 𝐸𝒓 of relative motion. Further, we shall be 

interested only in the bound state solutions and therefore, we shall consider 𝐸 < 0. 

In order to solve (8.28), it is convenient to introduce the dimensionless variable 𝜌 

and the dimensionless constant 𝜆 defined by 
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In terms of 𝜌 and 𝜆, Equation (8.28) becomes 

 

In order to solve this equation, we first examine the asymptotic behavior of 𝑅(𝜌). 

We note that as 𝜌 → ∞, Equation (8.31) reduces to 

     

The solutions of this equation are proportional to 𝑒±
𝜌

2. Out of these only 𝑒
−𝜌

2  is 

acceptable because 𝑒
𝜌

2 becomes unbounded as 𝜌 → ∞. This suggests that the exact 

solution of (8.31) must be of the form 

 

Substitution into (8.31) gives the equation for 𝐹(𝜌) as 

 

 

The power series solution 𝐹(𝜌) of the form 

 

Substituting into (8.34) and simplifying, we obtain 
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If we take 𝑠 = −(𝑙 + 1), then the first term in the expansion (8.36) would be 

𝑎0 𝜌𝑙+1⁄ , which tends to infinity 𝜌 → 0 as . Therefore, the acceptable value is 𝑠 =

𝑙. Now, setting the coefficient of 𝜌𝑘+1 in (8.37) equal to zero, we obtain 

 

 

This relation determines the coefficients 𝑎1, 𝑎2, 𝑎3 … in terms of 𝑎0 which can be 

arbitrary. In order to finds the behavior of the series (8.36) for large values of 𝑘, 

we note that 

 

This is similar to the asymptotic behavior of the expansion of the function 𝑒𝜌 as 

shown below. We have 

 

 

 

If the series (8.36) does not terminate, then 𝐹(𝜌) will behave as 𝑒𝜌 and so, 

according to (8.33), 𝑅(𝜌) will behave as 𝑒𝜌/2, which diverges as 𝜌 → ∞. Since this 

is not acceptable, the series must terminate at some value of 𝑘, say 𝑛𝑟. This can be 

possible if we require that 𝜆 be equal to a positive integer 𝑛 such that 

…(8.38) 
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In that case 𝑎𝑘+1, and hence all higher coefficients, will be zero. Since both 𝑛𝑟 and 

𝑙 can be positive integers or zero, it is clear that 𝑛 can have only positive integral 

values. 𝑛𝑟 is called the radial quantum number and 𝑛 the principal quantum 

number. Note that for a given 𝑛 the allowed values of 𝑙 are 1, 2, … , 𝑛 –  1. 

Energy Eigenvalues 

Equations (8.30) and (8.40) give the bound-state energy eigenvalues 

 

• This formula agrees exactly with the one obtained from the Bohr model.  
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• It was the most important early success of Schrödinger’s theory because it 

could reproduce Bohr’s formula from a general equation of motion.  

• The calculations based on this formula explain the main features of the 

experimental spectrum of hydrogen.  

• The agreement is not perfect and various corrections, especially for the fine 

structure arising from the relativistic effects and the electron spin, must be 

taken into account to obtain detailed agreement with the experiment. 

• It may be noted that 𝑛 may take all integral values from 1 to ∞.  

• The bound-state energy spectrum of a system held by the Coulomb force 

contains an infinite number of discrete energy levels.  

• This is because the magnitude of the Coulomb potential decreases slowly at 

larger 𝑟. On the other hand, short-range forces have a finite number of bound 

states. 

Degeneracy 

𝐸𝑛 = −
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• The energy eigenvalues depend only the principal quantum number n.  

• There is no dependence on 𝑙 and 𝑚𝑙. 

…(8.41) 

 



• The eigenfunctions for a hydrogenic atom are determined by the values of 

three quantum numbers 𝑛, 𝑙 and 𝑚𝑙. 

• For each energy level 𝐸𝑛 there are more than one distinct state which have 

the same energy. This phenomenon is called degeneracy. 

 

 

 

Electrons (also protons and neutrons) have an intrinsic angular momentum called 

spin, that makes them fall in two possible states but the energy of the hydrogen 

atom is independent of these states. As a result, the degeneracy of the atom is 2𝑛2, 

not 𝑛2. 

 

 

   

 

 



 

Radial Eigenfunctions 

Let us now come back to the solution of (8.34). 

 

𝐿𝑛+𝑙
2𝑙+1    Laguerre polynomials. 

 

 

 


