### 8.3 Hydrogenic Atoms

Let us consider a one-electron atom having atomic number $Z$. We know that $Z=$ 1 for the hydrogen atom $(H)$. The charge on the nucleus is $Z e$ and that on the electron is $-e$.

The potential energy due to the attractive Coulomb interaction between them is

$$
\begin{equation*}
V(r)=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} \tag{8.26}
\end{equation*}
$$

which depends only on the distance $r$ between the nucleus and the electron and hence is spherically symmetric.

If $m$ is the mass of the electron and $M$ is the mass of the nucleus, then the reduced mass of the system is

$$
\begin{equation*}
\mu=\frac{m M}{m+M} \tag{8.27}
\end{equation*}
$$

Since the nuclear mass $M$ is much larger than the electron mass $m$, the reduced mass $\mu$ is very close to $m$. That is, we shall consider the nucleus to be stationary. The radial Equation (8.12) becomes

$$
\begin{equation*}
\frac{d^{2} R}{d r^{2}}+\frac{2}{r} \frac{d R}{d r}+\frac{2 m}{\hbar^{2}}\left[E+\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}-\frac{l(l+1) \hbar^{2}}{2 m r^{2}}\right] R(r)=0 \tag{8.28}
\end{equation*}
$$

Since we are interested only in the energies associated with the relative motion, we may assume that we are working in the center-of-mass system, so that $E_{R}=0$ and the total energy $E$ is equal to the energy $E_{r}$ of relative motion. Further, we shall be interested only in the bound state solutions and therefore, we shall consider $E<0$.

In order to solve (8.28), it is convenient to introduce the dimensionless variable $\rho$ and the dimensionless constant $\lambda$ defined by

$$
\begin{equation*}
\rho=\left(-\frac{8 m E}{\hbar^{2}}\right)^{1 / 2} r \tag{8.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda=\frac{Z e^{2}}{4 \pi \varepsilon_{0} \hbar}\left(\frac{-m}{2 E}\right)^{1 / 2}=Z \alpha\left(\frac{-m c^{2}}{2 E}\right)^{1 / 2} \tag{8.30}
\end{equation*}
$$

where $\alpha=e^{2} /\left(4 \pi \varepsilon_{0} \hbar c\right) \approx 1 / 137$ is the well known fine-structure constant.
In terms of $\rho$ and $\lambda$, Equation (8.28) becomes

$$
\begin{equation*}
\frac{d^{2} R}{d \rho^{2}}+\frac{2}{\rho} \frac{d R}{d \rho}+\left[\frac{\lambda}{\rho}-\frac{1}{4}-\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=0 \tag{8.31}
\end{equation*}
$$

In order to solve this equation, we first examine the asymptotic behavior of $R(\rho)$. We note that as $\rho \rightarrow \infty$, Equation (8.31) reduces to

$$
\begin{equation*}
\frac{d^{2} R}{d \rho^{2}}-\frac{1}{4} R(\rho)=0 \tag{8.32}
\end{equation*}
$$

The solutions of this equation are proportional to $e^{ \pm \frac{\rho}{2}}$. Out of these only $e^{\frac{-\rho}{2}}$ is acceptable because $e^{\frac{\rho}{2}}$ becomes unbounded as $\rho \rightarrow \infty$. This suggests that the exact solution of (8.31) must be of the form

$$
\begin{equation*}
R(\rho)=e^{-\rho / 2} F(\rho) \tag{8.33}
\end{equation*}
$$

Substitution into (8.31) gives the equation for $F(\rho)$ as

$$
\begin{equation*}
\rho^{2} \frac{d^{2} F}{d \rho^{2}}+\rho(2-\rho) \frac{d F}{d \rho}+[(\lambda-1) \rho-l(l+1)] F(\rho)=0 \tag{8.34}
\end{equation*}
$$

When $\rho=0$, this equation yields
or

$$
\begin{align*}
l(l+1) & F(0)
\end{align*}=0 \quad \text { for } \quad l \neq 0
$$

The power series solution $F(\rho)$ of the form

$$
\begin{equation*}
F(\rho)=\sum_{k=0}^{\infty} a_{k} \rho^{s+k} \tag{8.36}
\end{equation*}
$$

Substituting into (8.34) and simplifying, we obtain

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k}[(s+k)(s+k+1)-l(l+1)] \rho^{k}-\sum_{k=0}^{\infty} a_{k}[s+k+1-\lambda] \rho^{k+1}=0 \tag{8.37}
\end{equation*}
$$

For this equation to be valid, the coefficient of each power of $\rho$ must vanish. Equating the coefficient of $\rho^{0}$ to zero gives

$$
\begin{array}{lrl} 
& s(s+1)-l(l+1) & =0 \\
\text { or } & (s-l)(s+l+1) & =0 \\
\text { Thus, } & s=l \text { or } s & =-(l+1)
\end{array}
$$

If we take $s=-(l+1)$, then the first term in the expansion (8.36) would be $a_{0} / \rho^{l+1}$, which tends to infinity $\rho \rightarrow 0$ as . Therefore, the acceptable value is $s=$ $l$. Now, setting the coefficient of $\rho^{k+1}$ in (8.37) equal to zero, we obtain

$$
a_{k+1}[(s+k+1)(s+k+2)-l(l+1)]-a_{k}(s+k+1-\lambda)=0
$$

Putting $s=l$ and rearranging, we obtain the recurrence relation

$$
\begin{equation*}
a_{k+1}=\frac{k+l+1-\lambda}{(k+1)(k+2 l+2)} a_{k} \tag{8.39}
\end{equation*}
$$

This relation determines the coefficients $a_{1}, a_{2}, a_{3} \ldots$ in terms of $a_{0}$ which can be arbitrary. In order to finds the behavior of the series (8.36) for large values of $k$, we note that

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\frac{1}{k}
$$

This is similar to the asymptotic behavior of the expansion of the function $e^{\rho}$ as shown below. We have

$$
e^{\rho}=\sum_{k=0}^{\infty} c_{k} \rho^{k}
$$

where

$$
c_{k}=\frac{1}{k!}
$$

Therefore,

$$
\frac{c_{k+1}}{c_{k}}=\frac{k!}{(k+1)!}=\frac{1}{k+1}
$$

So,

$$
\lim _{k \rightarrow \infty} \frac{c_{k+1}}{c_{k}}=\frac{1}{k}
$$

If the series (8.36) does not terminate, then $F(\rho)$ will behave as $e^{\rho}$ and so, according to (8.33), $R(\rho)$ will behave as $e^{\rho / 2}$, which diverges as $\rho \rightarrow \infty$. Since this is not acceptable, the series must terminate at some value of $k$, say $n_{r}$. This can be possible if we require that $\lambda$ be equal to a positive integer $n$ such that

$$
\lambda=n=n_{r}+l+1
$$

In that case $a_{k+1}$, and hence all higher coefficients, will be zero. Since both $n_{r}$ and $l$ can be positive integers or zero, it is clear that $n$ can have only positive integral values. $n_{r}$ is called the radial quantum number and $n$ the principal quantum number. Note that for a given $n$ the allowed values of $l$ are $1,2, \ldots, n-1$.

## Energy Eigenvalues

Equations (8.30) and (8.40) give the bound-state energy eigenvalues

$$
\begin{align*}
E_{n} & =-\frac{m}{2 \hbar^{2}}\left(\frac{Z e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \frac{1}{n^{2}} \\
& =-\frac{1}{2} m c^{2} \frac{(Z \alpha)^{2}}{n^{2}}, \quad n=1,2,3, \ldots \tag{8.41}
\end{align*}
$$

- This formula agrees exactly with the one obtained from the Bohr model.
(Energy of the Electron in the nth Bohr Orbit $E_{n}=-\frac{m}{2 \hbar^{2}}\left(\frac{Z e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \frac{1}{n^{2}}$ )
- It was the most important early success of Schrödinger's theory because it could reproduce Bohr's formula from a general equation of motion.
- The calculations based on this formula explain the main features of the experimental spectrum of hydrogen.
- The agreement is not perfect and various corrections, especially for the fine structure arising from the relativistic effects and the electron spin, must be taken into account to obtain detailed agreement with the experiment.
- It may be noted that $n$ may take all integral values from 1 to $\infty$.
- The bound-state energy spectrum of a system held by the Coulomb force contains an infinite number of discrete energy levels.
- This is because the magnitude of the Coulomb potential decreases slowly at larger $r$. On the other hand, short-range forces have a finite number of bound states.


## Degeneracy

$$
E_{n}=-\frac{1}{2} m c^{2} \frac{(Z \alpha)^{2}}{n^{2}}
$$

- The energy eigenvalues depend only the principal quantum number $n$.
- There is no dependence on $l$ and $m_{l}$.
- The eigenfunctions for a hydrogenic atom are determined by the values of three quantum numbers $n, l$ and $m_{l}$.
- For each energy level $E_{n}$ there are more than one distinct state which have the same energy. This phenomenon is called degeneracy.

Let us find the total degeneracy of the energy level $E_{n}$. For a given value of $n$, the quantum number $l$ may take any of the values $0,1, \ldots, n-1$. For each value of $l$, the quantum number $m_{l}$ may take any of the $(2 l+1)$ possible values $-l,-l+1, \ldots, 0, \ldots, l-1, l$. The total degeneracy of the level is therefore given by

$$
\sum_{l=0}^{n}(2 l+1)=2 \frac{n(n-1)}{2}+n=n^{2}
$$

Electrons (also protons and neutrons) have an intrinsic angular momentum called spin, that makes them fall in two possible states but the energy of the hydrogen atom is independent of these states. As a result, the degeneracy of the atom is $2 n^{2}$, not $n^{2}$.
These levels are labelled by two symbols according to the standard spectroscopic notation. The first is a number which represents the principal quantum number $n$; the second is a letter which indicates the value of the orbital angular momentum quantum number $l$ according to the following scheme:

| Value of $l$ | 0 | 1 | 2 | 3 | 4 | $5 \ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Letter | $s$ | $p$ | $d$ | $f$ | $g$ | $h \ldots$ |

According to this notation, the ground state $(n=1, l=0)$ is a $1 s$ state, the first excited state $(n=2, l=0,1)$ is four-fold degenerate, having one $2 s$ state and three $2 p$ states with $m_{l}=-1,0,+1$, and so on, as shown in the figure. All the $m_{l}$-states corresponding to a particular value of $l$ are drawn slightly apart to show their multiplicity, but they are degenerate.

$$
n=1 \frac{(1 s)}{l=0} \quad n=2 \frac{(2 s)}{l=0} \quad\left\{\begin{array}{lr}
\frac{(2 p)}{m_{l}} & +1 \\
\frac{l=1}{} & 0 \\
-1
\end{array}\right.
$$

## Radial Eigenfunctions

Let us now come back to the solution of (8.34).

$$
R_{n l}(r)=-\left\{\left(\frac{2 Z}{n a_{0}}\right)^{3} \frac{(n-l-1)!}{2 n[(n+l)!]^{3}}\right\}^{1 / 2} e^{-\rho / 2} \rho^{l} L_{n+l}^{2 l+1}(\rho)
$$

$L_{n+l}^{2 l+1} \quad$ Laguerre polynomials.

$$
\begin{aligned}
& L_{n+l}^{2 l+1}(\rho)=\sum_{k=0}^{n-l-1}(-1)^{k+1} \frac{[(n+l)!]^{2}}{(n-l-1-k)!(2 l+1+k)!} \frac{\rho^{k}}{k!} \\
& \rho=\left(\frac{-8 m E_{n}}{\hbar^{2}}\right)^{1 / 2} r=\left(\frac{2 Z m e^{2}}{n\left(4 \pi \varepsilon_{0}\right) \hbar^{2}}\right) r=\left(\frac{2 Z}{n a_{0}}\right) r
\end{aligned}
$$

$a_{0}$ being the radius of the first Bohr orbit for hydrogen:

$$
a_{0}=\left(4 \pi \varepsilon_{0}\right) \hbar^{2} / m e^{2}
$$

